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Abstract

Fragile X spectrum disorder (FXSD) includes: fragile X syndrome (FXS), fragile X-associated 

tremor ataxia syndrome (FXTAS) and fragile X-associated primary ovarian insufficiency (FXPOI), 

as well as other medical, psychiatric and neurobehavioral problems associated with the 

premutation and gray zone alleles. FXS is the most common monogenetic cause of autism (ASD) 

and intellectual disability (ID). The understanding of the neurobiology of FXS has led to many 

targeted-treatment trials in FXS. The first wave of phase II clinical trials in FXS were designed to 

target the mGluR5 pathway; however the results did not show significant efficacy and the trials 

were terminated. The advances in the understanding of the GABA system in FXS have shifted the 

focus of treatment trials to GABA agonists, and a new wave of promising clinical trials is under 

way. Ganaxolone and allopregnanolone (GABA agonists) have been studied in individuals with 

FXSD and are currently in phase II trials. Both allopregnanolone and ganaxolone may be 

efficacious in treatment of FXS and FXTAS, respectively. Allopregnanolone, ganaxolone, riluzole, 

gaboxadol, tiagabine, and vigabatrin are potential GABAergic treatments. The lessons learned 

from the initial trials have not only shifted the targeted system, but also have refined the design of 
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clinical trials. The results of these new trials will likely impact further clinical trials for FXS and 

other genetic disorders associated with ASD.
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INTRODUCTION

The recently proposed term “fragile X spectrum disorder” (FXSD) highlights the continuity 

of clinical phenotypes from the gray zone (45-54 CGG repeats in the promoter of the FMR1 
gene, located in the X chromosome) throughout the premutation range (55-200) and into the 

full mutation range (>200). The FXSD term emerged due to an overlap of symptoms across 

the CGG repeat range, CGG repeat range. Developmental problems similar to those with 

fragile X syndrome (FXS) including intellectual disability (ID), autism spectrum disorders 

(ASD) and seizures can occur in some children with the premutation [1-3]; and FXTAS, 

typically associated with the premutation, has now been observed in individuals with the 

gray zone mutation [4,5] and full mutation with lack of methylation or mosaicism [6-8].

Since the initial description of the fragile X syndrome (FXS) by Lubs and colleagues [9] 

almost five decades ago, considerable advances in the understanding of the phenotype-

genotype and the neurobiology of FXS have been made. FXS is the leading mono- genic 

form of ASD and ID in males and presents with typical facial dymorphism in the majority of 

older individuals but in only 30% of children. Intellectual disability occurs in 85% of males 

(mean IQ is 40) and 25% of females (IQ below 70). In addition, about 60% of males with 

FXS have a diagnosis of ASD [10, 11]. The physical features are long and narrow face, large 

and prominent ears, high arched palate, hyperextensible finger joints, pectus excavatum, flat 

feet, soft skin and mitral valve prolapse. Other signs include low muscle tone, seizures and 

pubertal macroorchidism [12-14]. Studies show that the clinical features of individuals with 

FXS [14, 15] are the result of the FMRP (FMR1 encoded protein) deficit [16] seen in the full 

mutation [17] and abnormal methylation of the promoter and the gene [18, 19]. Males with 

the full mutation have little or absent production of FMR1 mRNA and FMRP [20]. Females 

have variable levels of FMR1 mRNA and FMRP, related to the X- chromosome activation 

ratio (the percentage of cells with the normal X as the active X chromosome) [21].

FMRP, an RNA binding protein, is in part a key translational suppressor and a transport 

regulator of several mRNAs that are important for synaptic plasticity [22]. FMRP acutely 

regulates metabotropic glutamate receptor (mGluR)-stimulated protein synthesis and long-

term synaptic depression (mGluR-LTD) [23]. In the absence of FMRP, there is an increased 

number of long and immature dendritic spines of neurons in the Fmr1 knockout (KO) mice 

[24, 25]. The mGluR5 pathway plays a role on the development of long-term depression 

(LTD) in FXS, which in turn weaken long-term memory consolidation [26-28]. These 

advances in understanding the neurobiology of FXS have led to studies of targeted 

treatments that can rescue many features of FXS in the Fmr1 KO mice and in other animal 
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models [22, 29-33]. In the past decade, human clinical trials for FXS based on the use of 

mGluR5 antagonists were conducted; however, due to their lack of efficacy these trials were 

abandoned [32, 34, 35]. Since then, the focus has shifted to the GABA system [36]. Studies 

in the Fmr1 KO mouse demonstrated down-regulation of the GABA system with decreased 

levels of many of the GABA receptors and proteins that are related to the synthesis and 

metabolism of GABA [30, 37, 38]. These findings have led to clinical trials of GABAergic 

drugs in FXS. In this review we will discuss the GABA deficits observed in FXSD as well as 

and potential GABAergic compounds and ongoing related clinical trials.

In 1991 the second FXSD fragile X-associated primary ovarian insufficiency (FXPOI) was 

described and was linked to the premutation allele [39, 40]. About 20% of female carriers 

have FXPOI, which is defined as menopause before the age of 40. The mechanism that 

causes FXPOI is not known, but it has been proposed that the premutation leads to the 

accumulation of ovarian toxic products [41, 42]. The third FXSD, also linked to the 

premutation allele, was described in 2001 [43] and subsequently named fragile X- associated 

tremor ataxia syndrome (FXTAS) [44, 45].

Clinical features of FXTAS include progressive kinetic tremor, gait ataxia, executive 

function and memory deficits, peripheral neuropathy, and parkinsonism; with associated 

variable features, such as cognitive decline into dementia, dysautonomia, and psychiatric 

problems, including depression, apathy, and anxiety [43, 46- 48]. Many individuals with the 

premutation develop neurological and cognitive problems—including executive function 

deficits, memory problems, neuropathy, immune mediated problems, migraines, 

hypertension, and psychiatric symptoms, particularly anxiety—before the onset of tremor 

and ataxia [49-55]. Neuroimaging in FXTAS reveals white matter disease and diffusion 

tensor imaging (DTI) abnormalities of both the cerebellum and cerebrum [56- 61]; atrophy 

of the basal ganglia and brain stem [61, 62], cerebellum spongiosis [59,63,64], 

demyelination in the white matter, and iron accumulation in choroid plexus and basal 

ganglia [65]. The pathological hallmark of FXTAS is the presence of intranuclear inclusions 

in neurons and astrocytes throughout the central nervous system and peripheral nervous 

system [62, 66, 67]. Peripheral organ inclusions are found in the gastro-intestinal system, 

heart, testicles, adrenals and pancreas; and their presence correlate to many of the symptoms 

that are commonly seen in carriers, including cardiac arrhythmias, hypertension, irritable 

bowel syndrome, erectile dysfunction, and low testosterone levels [66, 68]. Although 

FXTAS is a disorder associated with aging in carriers of the FMR1 premutation, FXTAS can 

occur earlier in adult life, particularly if another disease process is occurring, such as 

substance abuse that may exacerbate the pathological process of FXTAS [69-71].

FXTAS is thought to be the result of mRNA toxicity from the elevated FMR1 mRNA levels, 

a chronic DNA damage repair mechanism, and in part to lower FMRP levels [72]. The 

elevated levels of mRNA can form hairpin structures which are sticky and lead to the 

sequestration of many proteins that are important for neuronal function and the formation of 

pathognomonic inclusion bodies in neurons and astrocytes throughout the CNS, the 

peripheral nervous system, and other organs [8, 73]. Animal model studies show that mouse 

hippocampal premutation neurons have a cluster burst firing activity related to the GABA 

deficits; and allopreg- nanolone, a GABAA agonist, eliminates the abnormal burst firing 
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[74]. A clinical trial of allopregnanolone in premutation carriers with FXTAS is under 

development and portends the potential use of GABAergic treatments in premutation 

carriers.

GABA IN THE CORTEX

While the glutamatergic hypothesis of FXS proposes an exaggerated excitatory mGluR 

signaling, the GABAergic hypothesis is anchored in decreased GABA signaling. These two 

hypotheses combined suggest that an excitatory/inhibitory imbalance underlies the 

pathophysiology of FXS. GABA is the major inhibitory neurotransmitter in the adult 

mammalian brain and is synthesized and released by interneurons in the cerebral cortex. 

These interneurons are the only source of GABA and the main provider of inhibitory 

signaling to the cerebral cortex. All interneurons in the cortex are inhibitory with the 

exception of spiny stellate cells. Inhibitory interneurons include a wide variety of 

subpopulations that can be classified based on their morphology, marker expression, and 

electrophysiological properties. GABA is synthesized by two isoforms of glutamic acid 

decarboxylase (GAD), GAD65 and GAD67. Both isoforms are present in most interneurons, 

but GAD67 is located the cytoplasm, whereas GAD65 is located in membranes and nerve 

endings. It has been suggested that GAD67 preferentially synthesizes cytoplasmic GABA, 

while GAD65 synthesized GABA for vesicular release [75]. Therefore, the level of 

expression of GAD65 vs. that of GAD67 could be an indicator of interneuronal capacity to 

produce and release GABA. GABA is secreted into the synaptic space and binds to 

transmembrane receptors in pre- and postsynaptic neuronal processes, normally inducing 

hyperpolarizing events. There are two GABA receptors, the ionotropic GABAA receptor and 

the metabotropic GABAB receptor. In the adult brain, GABA acts primarily through 

activation of the fast-hyperpolarizing GABAA receptors that are ligand-gated chloride ion 

channels comprised of a, B, y and 8 subunits in a heteropentameric structure [76, 77]. 

GABAB receptors are responsible for the later and slower component of inhibitory 

transmission [78] and are composed of two subunits, 1 and 2. GABA is released into the 

extracellular space, where there is reuptake by the GABA transporter GAT1 to the 

intracellular space. The balance between the different components of the GABA system 

modulates the inhibitory state of the CNS circuitry and an alteration of this balance induces 

a change of the excitatory/inhibitory balance in the brain and therefore circuitry malfunction.

GABA SYSTEM RELATED TREATMENT FOR FXS

Animal Models

The standard animal model for the study of FXS is the Fmr1 KO mouse. Studies 

investigating the amount of the GABA neurotransmitter in the Fmr1 KO mice have not come 

into an agreement. While, an increase in the amount of GABA was described in brainstem 

[79], a decrease in GABA has been noted in the cortex and cerebellum in these mice [37, 

80]. The number of GABA-synthesizing cells, the inhibitory interneurons, was reported 

unchanged in the cortex; however the number of a specific type of interneuronal 

subpopulation, the PV+ cells, were decreased in the cortex of Fmr1 KO mice [37, 81]. 

Increasing evidence also sup- ports a role for GABAA receptors in the pathophysiology of 

FXTAS [82]. Fmr1 KO mice present with underexpression of a series of messengers and 
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proteins of GABA receptor subunits (a to p subunits in cortex, hippocampus, cerebellum, 

and other brain region [83-89]. It has been suggested that the absence of FMRP in mice 

leads to dysregulation of the mRNAs of some GABAA receptors that would normally be 

bound to it [36]. GABA transporter proteins (GAT1-4), GABA degradation enzymes 

(succinate semialdehyde dehydrogenase and GABA transaminase), and GABA receptor-

clustering proteins (gephyrin) have also been studied in the Fmr1 KO mice, being mostly 

down-regulated [82, 84]. However, the level of GAD65/67 protein was increased in the 

cortex, hippocampus, brainstem and cerebellum [87, 88], while it was reported to be 

decreased in the amygdala of the Fmr1 KO mice [37]. A GABAB receptor subunit is also 

down-regulated in the Fmr1 KO mice [90]. The expression of genes encoding enzymes and 

proteins important in the synthesis, transport, and degradation of GABA or related to the 

clustering of GABAA receptors has also been examined in FXTAS. Cerebellar RNA over-

expression of several GABAA receptor subunits (a1, a3, a4, B1, B2 and y2) and proteins 

involved in the GABA metabolism (GAD1, ssadh and gephyrin) in a CGG repeat 

premutation knock-in mouse, a model for FXTAS, was reported [82]. Because no 

differential expression of the GABA-related genes was observed in the cerebellum of the 

knock- in premutation mouse, the authors speculated that it is unlikely that a reduction of 

FMRP levels is responsible for these findings and hypothesized that it may be due to an 

RNA effect [82]. More studies are needed in order to understand the state of the GABAergic 

system in both FXS and FXTAS. Unfortunately, similar studies in postmortem tissue of 

patients with FXS are lacking at this point. Studies in humans are necessary in order to 

better understand these diseases and generate novel and efficient treatments for FXS and 

premutation involvement.

One of the main targets for treatments for FXS is the GABAA receptor. Several modulators 

of GABAA activity have been tested in preclinical studies in the Fmr1 KO mice, including 

gaboxadol, and neurosteroids such as allopregnanolone or similar synthetic steroids. 

Gaboxadol is a superagonist of 8 containing GABAA receptor [91]. Gaboxadol-treated Fmr1 
KO mice experienced an in- crease in the axon-potential threshold and a decrease of 

hyperactivity [92]. Additionally, alphaxalone and ganaxolone, synthetic neurosteroids, 

prevented seizures and corrected repetitive behavior in the Fmr1 KO mice [93]. The 

GABAB receptor has also been targeted for treatment in the Fmr1 KO mouse and in 

patients. Arbaclofen, a selective GABAB agonist, reversed social behavior deficits and 

elevated protein synthesis in Fmr1 KO mice [94, 95].

No GABA-related preclinical treatments have been performed for FXTAS. However, 

Zhengyu Cao and collaborators evaluated the influence of allopregnanolone, a positive 

allosteric modulator of the postsynaptic GABAA receptors [96], on the electric firing pattern 

of premutation hippocampal neurons [74]. They found that allopregnanolone suppressed the 

clustered burst firing pattern of premutation hippocampal neurons, reducing the spike rate as 

well as the mean burst duration, in a concentration dependent and reversible manner. 

Allopregnanolone and ganaxolone are agonists (allosteric modulators) of GABAA receptors 

[97, 98] that are currently being studied as a FXS treatment in humans. Acomprosate, 

riluzole, gaboxadol, tiagabine, and vigabatrin are other potential GABAergic treatments.
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HUMAN STUDIES

(Table 1. summarizes the studies in individuals with FXSD).

Acamprosate

Acamprosate, an FDA-approved drug for the maintenance of abstinence from alcohol use in 

adults, is an agent with potential pleiotropic effects impacting glutamate and GABA 

neurotransmission [99]. In animal studies, acamprosate acts as an antagonist at the NMDA 

glutamate receptor and exhibits GABAA agonism [99, 100]. The open-label treatment with 

acamprosate in three patients with FXS and a comorbid diagnosis of ASD showed that all 

three patients improved in linguistic communication [101].

A prospective open-label 10-week trial of acamprosate was also conducted in 12 youth aged 

6-17 years (mean age: 11.9 years) with FXS. Acamprosate use (mean dose: 1,054 ± 422 mg/

day) was generally safe and well tolerated and was associated with a significant 

improvement in social behavior and a reduction in inattention/hyperactivity. An increase in 

brain-derived neurotrophic factor (BDNF) occurred with treatment and BDNF may be a 

useful bio- marker in future acamprosate studies [102].

Arbaclofen

Arbaclofen, a selective GABAB agonist, was evaluated in a randomized, double-blind, 

placebo-controlled crossover study in 63 subjects (55 male), ages 6 to 39 years, with FXS. A 

post-hoc subgroup of 27 subjects with more severe social impairment showed improvements 

on the Vineland II-Socialization raw score, on the ABC-Social Avoidance scale, and on all 

global measures. In this exploratory study, arbaclofen did not show a benefit on irritability in 

FXS [103]. This study led to an 8-week open-label trial enrolling 32 children and 

adolescents with either Autistic Disorder or Pervasive Developmental Disorder-Not 

Otherwise Specified without FXS, and a score 2:17 on the Aberrant Behavior Checklist 

(ABC)- Irritability subscale [104]. Arbaclofen was generally well tolerated. The most 

common adverse events were agitation and irritability, which typically resolved without dose 

changes, and were often felt to represent spontaneous variation in underlying symptoms. 

Improvements were observed on several outcome measures in this exploratory trial, 

including the ABC-Irritability (the primary end- point) and the Lethargy/Social Withdrawal 

subscales, the Social Responsiveness Scale, the CY-BOCS-PDD, and clinical global 

impression scales. However, a subsequent 12-week double-blind controlled trial of 

arbaclofen in individuals with ASD aged 5 to 21 did not demonstrate efficacy [105], leading 

to the dissolution of the company. The phase III double-blind controlled trial of arbaclofen 

in adults with FXS also did not demonstrate efficacy; however, the controlled trial in 

children with FXS aged 5 to 11 did demonstrate limited efficacy in two secondary measures 

(ABC FX-Irritability scale and the parent stress scale), although the primary outcome 

measure, ABC FX-Social Avoidance Scale, did not demonstrate efficacy [106]. Although 

arbaclofen may have limited efficacy in young children with FXS, it is no longer available 

for research study.
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Allopregnanlone

Allopregnanolone is a neurosteroid and positive modulator of GABAA receptors. Functions 

associated with this compound in- clude stimulation of neurogenesis in the hippocampus 

[107], reversal of hippocampal-dependent learning and memory problems [108], 

neuroprotection by reducing the expression of the proapoptotic protein caspase 3 [109, 110] 

and inhibiting the mitochondrial permeability transition pores, a key process in the intrinsic 

pathway of apoptosis [111]. As previously mentioned, preliminary data demonstrate 

abnormal network bursting activity in hippocampal neurons cultured from premutation mice 

in addition to up-regulation of several proteins that are related to the RNA toxicity caused by 

the elevated FMR1 mRNA seen in premutation carriers [74]. Both the RNA toxicity and the 

persistent bursting are a plausible mechanism for neurodegeneration that may lead to the 

neurological symptoms in FXTAS. Allopregnanolone, by potentiating GABAA-receptor 

signaling, has been shown to eliminate the up-regulation of proteins and the abnormal 

neuronal bursting in premutation neurons that leads to neuroprotection [74, 112].

Since Alzheimer’s disease (AD) is sometimes associated with FXTAS [55, 113], and 

postmortem neuropathological studies of brains of individuals with FXTAS have 

demonstrated changes consistent with AD, it is important to review some of the studies of 

allopregnanolone in AD. Preliminary data demonstrated in an AD mouse model and human 

progenitor cells that allopregnanolone improved neuronal proliferation [114], reversed 

neurogenic and cognitive deficits [115], promoted regeneration and reduced beta-amyloid 

burden [116], restored hippocampal dependent learning, and improved memory and survival 

[108]. In addition, allopregnanolone is reduced in the prefrontal and temporal cortex in AD. 

Currently this drug is being studied in AD (ClinicalTrials.gov Identifier: NCT02221622), 

traumatic brain injury (ClinicalTrials.gov Identifier: NCT01673828) and mild traumatic 

brain injury (ClinicalTrials.gov Identifier: NCT01336413).

In summary, allopregnanolone can prevent neuronal loss and also stimulate the generation of 

new neurons from neural stem and progenitor cells. This compound is considered a targeted 

treatment for FXTAS and may counteract the development of neurological disability by 

improving executive function deficits, memory deficits, and psychiatric symptoms, 

particularly anxiety (a hallmark of premutation carriers) [50].

Currently, there is an IND for an open trial to assess the safety and efficacy of 

allopregnanolone as a new treatment for adults with FXTAS and neurological problems. 

Premutation carriers ages 50- 85 who present with tremor and/or ataxia in addition to 

executive function deficits will be enrolled. The participants will receive escalating doses of 

allopregnanolone IV infusions once a week for three weeks to reach the highest tolerated 

dose and continue for 12 weeks. Primary outcome measures include the California Verbal 

Learning Test. Secondary end points are other cognitive measures, such as the Behavioral 

Dyscontrol Scale (BDS-2), CANTAB battery, COWAT, ERP measures, and a tremor/balance 

measure, the CATSYS, used in previous treatment studies of FXTAS [117]. It is hoped that 

this treatment will stabilize the progression of FXTAS and improve memory and executive 

function deficits in addition to anxiety that these carriers have.
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Ganaxolone

Ganaxolone, also known as CCD-1042, is a 3B-methylated synthetic analog of the 

progesterone metabolite allopregnanolone, which is a neuroactive steroid, and is a potent 

and selective positive allosteric modulator of the GABAA receptor [98]. Ganaxolone is 

beneficial for the treatment of seizures in children and adults [87, 96, 98, 118, 119] and also 

has sedative and anxiolytic effects. Unlike benzodiazepines, there does not appear to be 

tolerance to the anticonvulsant effects of ganaxolone [118, 120, 121]. In humans, 

ganaxolone is well tolerated [118, 121-125], with side- effects including sedation, dizziness, 

fatigue, and headache. Six hundred thirty one adults (males and females, age 18 to 69 years 

old) and 79 pediatric subjects (males and female, age 6 months to 15 years) have been 

exposed to ganaxolone [126]. There were 214 subjects in Phase I studies and 498 in Phase II 

epilepsy and migraine studies. The epilepsy studies involved more than 100 patients and 

generated data supportive of ganaxolone’s efficacy and safety in the treatment of both 

children and adults suffering from refractory epilepsy. In a placebo-controlled adult epilepsy 

trial, adverse events were similar to placebo. Overall, ganaxolone was considered to be well 

tolerated in clinical trials, and the evidence of efficacy in epilepsy was sufficient for the drug 

to be advanced to additional clinical testing. However it has never been tested as an 

anxiolytic. As previously mentioned, ganaxolone is considered a targeted specific treatment 

of FXS because the GABAA receptors are dramatically down-regulated in FXS together 

with other proteins involved in the metabolism of GABA. Recent evidence indicates that 

deficits in GABA-mediated inhibition may underlie many of the key symptoms in FXS, 

including seizures, anxiety, and autistic behaviors [82,84,93,127]. As GABAA receptors are 

the major inhibitory receptors in the brain and are specifically involved in processes that are 

disturbed in fragile X, including neuronal excitability (leading to enhanced seizure 

susceptibility), anxiety, sleep, and learning, enhancement of the function of GABAA 

receptors may have major therapeutic benefits for FXS. Currently, there is a phase II proof-

of-concept clinical trial of ganaxolone being conducted. This study is a double-blind, 

randomized, placebo-controlled, crossover trial to investigate ganaxolone treatment in 

children and adolescents with FXS (ClinicalTrials.gov Identifier: NCT01725152). Sixty 

subjects (aged 6-17 years) are being randomized to receive either ganaxolone or placebo for 

six weeks and then crossed over to the opposite treatment for another six weeks. The aims of 

the study are to assess the safety, tolerability, and efficacy of ganaxolone for treatment of 

anxiety and attention in individuals with FXS. The hypothesis is that ganaxolone treatment 

compared to placebo will improve anxiety and attention as measured by the several 

neuropsychological and psychometric tests. The ganaxolone oral suspension dose is titrated 

from 3 mg/kg up to 12 mg/kg, with maximum of 1500 mg/day; the placebo and ganaxolone 

are given in three divided doses daily. The primary outcome measure used is the Clinical 

Global Impression- Improvement scale (CGI-I). Secondary outcome measures include 

Pediatric Anxiety Rating Scale (PARS), Visual Analog Scale, Aberrant Behavior Checklist 

and the Swanson, Nolan, and Pelham-IV questionnaire (SNAP-IV). Other outcome measures 

are the KiTAP-Test of Attentional Performance for Children, social gaze (eye tracking) and 

event-related brain potentials (ERP). The study was started in 2012 and it will be completed 

in 2015.
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Riluzole

Riluzole is hypothesized to have an inhibitory effect on glutamate release, block excitotoxic 

effects of glutamate, and potentiate postsynaptic GABAA receptor function. The pleiotropic 

effects of riluzole may antagonize common mechanisms underlying chronic cerebellar 

ataxia, a debilitating and untreatable consequence of various diseases including FXTAS. In a 

randomized, double-blind, placebo-controlled pilot trial, 40 patients presenting with 

cerebellar ataxias of different etiologies (one of them with FXTAS) were randomly assigned 

to riluzole (100 mg/day) or placebo for 8 weeks. The number of patients with a 5-point drop 

in the International Cooperative Ataxia Rating Scale (ICARS) was significantly higher in the 

riluzole group than in the placebo group after 4 weeks. The participant with FXTAS showed 

the aforementioned improvement [128]. In a second trial, riluzole was associated with 

clinical response in 1 of 6 adult subjects with FXS (17%), in a six-week open- label 

prospective pilot study (100 mg/day). Significant improvement was only noted on the 

ADHD Rating Scale-IV (which became non-significant when corrected for multiple 

comparisons). Overall, riluzole use was not associated with significant clinical improvement 

in FXS [129].

CONCLUDING REMARKS

Even though many targeted clinical trials have been completed, the treatment of children 

with FXS continues to require special education, speech and language therapy, behavioral 

intervention, sensory integration, occupational therapy, and physical therapy. In addition, a 

variety of medications other than targeted treatments such as stimulants, guanfacine, 

aripiprazole, rispiradone and selective serotonin reuptake inhibitors (SSRIs) are also 

required [130]. In regards to FXTAS there is currently no disease-modifying intervention 

although, several medications can help with the symptomatic treatment [55, 131, 132]. There 

are many challenges at many levels in the discovery of efficacious medications that target 

specific protein deficits related to genetic syndromes such as FMRP in FXS.

FMRP has many functions, although it mainly acts as a translational repressor; FMRP can 

also enhance translation, transport and stabilize mRNAs among other functions. FMRP is 

thought to enhance GABA-receptors expression, so that its absence will lower GABA 

receptors. Neurobiological studies have demonstrated GABA deficits in both those with FXS 

and premutation disorders including FXTAS. The advances in the understanding of the 

GABA system and neurobiology in FXS is now leading to a new wave of clinical trials, and 

the experience of the previous trials has help researchers and physician scientists to make 

modifications in the design of the trials that may potentially identify specific benefits in the 

target population. The criteria for inclusion and outcome measures in clinical trials, in 

particular, are areas of active research.

The GABAergic compounds described here, particularly the neurosteroids, will hopefully 

demonstrate safety and efficacy in the studies of FXSD including both those with FXS and 

premutation disorders. Both allopregnanolone and ganaxolone hold promise to treat FXSDs, 

and studies with gaboxidol are planned. It is important to remark that other agents that 

indirectly influence the GABA deficits in FXS include the IGF-1 analogue, which is 

currently undergoing multicenter trials in FXS [133, 134], and cannabinoids [135], for 
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which trials will begin soon in FXS. It is likely that GABAergic agents will continue to be 

part of a multimodality treatment for FXSDs for many years to come. The results of these 

new trials will likely impact further trials for FXSD and other genetic or idiopathic 

disorders. Further studies are needed to determine the safety and efficacy of GABA-agonist 

treatments for FXSD. The future looks promising for GABA-agonist compounds for FXSD 

including FXS and FXTAS.
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Table 1

Summary of current and potential GABAergic compounds in FXSD

Drug Efficacy in FXSD

Acamprosate Improvements in language and behavior [101]
Improvements in social behavior and
inattention/hyperactivity [102]

Arbaclofen Improvements in social function and behavior in children
with FXS [103]

Allopregnanolone Initiating for adults with FXTAS

Ganaxolone Ongoing study in children with FXS (ClinicalTrials.gov
Identifier: NCT01725152)

Gaboxadol No studies but recently licensed for initiation of phase 1 and
2 studies in FXS and Angelman syndrome

Riluzole Clinical response in 1/6, Improvements in attention and
hyperactivity, correction in ERK activation (open label)
[129]. One patient with FXTAS improved in the ICARS [128]

Tiagabine No studies

Vigabatrin No studies
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